A Simple Model to Quantify Radiolytic Production following Electron Emission from Heavy-Atom Nanoparticles Irradiated in Liquid Suspensions.

نویسندگان

  • Nathan Wardlow
  • Chris Polin
  • Balder Villagomez-Bernabe
  • Fred Currell
چکیده

We present a simple model for a component of the radiolytic production of any chemical species due to electron emission from irradiated nanoparticles (NPs) in a liquid environment, provided the expression for the G value for product formation is known and is reasonably well characterized by a linear dependence on beam energy. This model takes nanoparticle size, composition, density and a number of other readily available parameters (such as X-ray and electron attenuation data) as inputs and therefore allows for the ready determination of this contribution. Several approximations are used, thus this model provides an upper limit to the yield of chemical species due to electron emission, rather than a distinct value, and this upper limit is compared with experimental results. After the general model is developed we provide details of its application to the generation of HO• through irradiation of gold nanoparticles (AuNPs), a potentially important process in nanoparticle-based enhancement of radiotherapy. This model has been constructed with the intention of making it accessible to other researchers who wish to estimate chemical yields through this process, and is shown to be applicable to NPs of single elements and mixtures. The model can be applied without the need to develop additional skills (such as using a Monte Carlo toolkit), providing a fast and straightforward method of estimating chemical yields. A simple framework for determining the HO• yield for different NP sizes at constant NP concentration and initial photon energy is also presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simple Synthesis of Copper Oxide Nanoparticles in the Presence of Extractive Rosmarinus Officinalis leaves

In this work, copper oxide nanoparticles have been synthesized via extractive Rosmarinus Officinalis leaves by simple and economic co-precipitation method at ambient conditions which it has used (CH3COO)2Cu+H2O individually as Cu sources. It was found that uniform copper oxide nanoparticles have been successfully produced at various temperature, namely 400, 600, and 800 0C. Powder X-ray Diffrac...

متن کامل

Coulomb nanoradiator-mediated, site-specific thrombolytic proton treatment with a traversing pristine Bragg peak

Traversing proton beam-irradiated, mid/high-Z nanoparticles produce site-specific enhancement of X-ray photon-electron emission via the Coulomb nanoradiator (CNR) effect, resulting in a nano- to micro-scale therapeutic effect at the nanoparticle-uptake target site. Here, we demonstrate the uptake of iron oxide nanoparticles (IONs) and nanoradiator-mediated, site-specific thrombolysis without da...

متن کامل

Optimization of Biological Synthesis of Silver Nanoparticles using Fusarium oxysporum

Silver nanoparticles are increasingly used in various fields of biotechnology and applications in the medicine. Objectives of this study were optimization of production of silver nanoparticles using biotransformations by Fusarium oxysporum, and a further study on the location of nanoparticles synthesis in this microorganism. The reaction mixture contained the following ingredients (final concen...

متن کامل

α-Radiolysis of ionic liquid irradiated with helium ion beam and the influence of radiolytic products on Dy3+ extraction.

Helium ion (He(+)) beam produced by a heavy ion linear accelerator was used to simulate α-rays for studying the radiation effect on 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid ([C4mim][NTf2]). The water-soluble radiolytic products of [C4mim][NTf2] under He(+) beam irradiation were analysed, and it was found that they were similar to those by γ-ray irradiation, but...

متن کامل

Optimization of Biological Synthesis of Silver Nanoparticles using Fusarium oxysporum

Silver nanoparticles are increasingly used in various fields of biotechnology and applications in the medicine. Objectives of this study were optimization of production of silver nanoparticles using biotransformations by Fusarium oxysporum, and a further study on the location of nanoparticles synthesis in this microorganism. The reaction mixture contained the following ingredients (final concen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Radiation research

دوره 184 5  شماره 

صفحات  -

تاریخ انتشار 2015